Website is intended for physicians
Search:
Всего найдено: 8


 

Article exists only in Russian.

 

Abstract:

Aim: was to assess the consistency of measurements of anatomic and functional parameters performed with EchoCG and MRI and to determine the possibility of MRI to visualize the coaptation of valve leaflets after reconstruction of the aortic valve (AV) using the Ozaki technique.

Material and methods: the study included 124 patients who underwent MRI of the heart anc transthoracic EchoCG, 9,3±4,0 days after the Ozaki operation. With EchoCG and MRI, EDV and LV EF were calculated. Dopplerography determined the area of AV opening and the transaortal pressure gradient. At MRI, the area of AV opening was planetically measured, and the transoortal pressure gradient was calculated from results of phase contrast study To assess the consistency of measurement results, the Blend-Altman method was used.

Results: mean values obtained with EchoCG and MRI were statistically significantly different (p<0,001) only when measuring LV EDV The greatest accordance between measurements of EchoCG and MRI was observed in the evaluation of the transaortal pressure gradient (0,04±3,7 mm Hg). Less coordinated were measurements of the opening area of AV (0,22±0,79 cm2) and LV EF (0,22±8,9%). Less consistency was in measurement of EDV (26,4±33,0 ml). The mean value of the difference was statistically significantly different from zero when measuring the opening area of AV (p=0,180) and the transaortal pressure gradient (p=0,120). The article presents 5 clinical examples of visual evaluation of leaflets coaptation after AV reconstruction by the Ozaki method.

Conclusions: differences in consistency in the assessment of the opening area of the AV and the transaortal pressure gradient in echocardiography and MRI are not clinically significant, indicating that these measurement methods can be used interchangeably after AV reconstruction using the Ozaki technique.

Results of measurements of EDV size and LV EF in EchoCG and MRI are less consistent and not interchangeable, therefore, measurement results should be interpreted in the context of the specific method

MRI should be a part of the diagnostic algorithm after Ozaki surgery, but its use in the early postoperative period may be limited to cases of poor quality or inconsistent Echocardiography

 

References

1.      Salem M. A.; Abd El-Razek M. A.; Bassiouny M. I. et al. Diagnostic Value of Cardiac MRI in Aortic Valve Stenosis in Comparison with Echocardiography. Med J Cairo Univ., 2016; 84 (2):271-278.

2.      Sondergaard L., Hildebrandt P., Lindvig K., et al. Quantification by magnetic resonance velocity mapping. Am Heart J., 1993; 26(5):156-1164.

3.      Bellenger N.G., Burgess M.I., Ray S.G. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionucleide ventriculography and cardiovascular magnetic resonance. Are they interchangeable?. Eur Heart J., 2000; 21:1387-1396.

4.      Bellenger N.G., Francis J.M., Davies L.C. et al. Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson. 1999; 1(4):323-330.

5.      Bernard Y, Meneveau N., Boucher S. et al. Lack of agreement between left ventricular volumes and ejection fraction determined by two-dimensional echocardiography and contrast cineangiography in postinfarction patients. Echocardiography. 2001;18:113-122.

6.      Darasz K.H., Underwood S.R., Bayliss J. et al. Measurement of left ventricular volume after anterior myocardial infarction: comparison of magnetic resonance imaging, echocardiography, and radionuclide ventriculography. The Int J of Cardiovasc Imaging. 2002;18(2):135-142.

7.      Gardner B., Bingham S., Allen M. et al. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. The J of Cardiovasc ultrasound. 2009;7:38-44.

8.      Li C., Lossnitzer D., Katus H.A. et al. Comparison of left ventricular volumes and ejection fraction by monoplane cineventriculography, unenhanced echocardiography and cardiac magnetic resonance imaging. Int J Cardiovasc Imaging. 2012; 28(5):1003-1010.

9.      Malm S., Frigstad S., Sagberg E.; et al. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography a comparison with magnetic resonance imaging. J Am Coll Cardiol. 2004; 44(5):1030-1035.

10.    Ozaki S. Pathophysiology of calcification of bioprosthetic heart valves: an experimental investigation. LeuvenUniversity Press. 2001;238.

11.    Ozaki S., KawaseI., Yamashita H., et al. A total of 404 cases of aortic valve reconstruction with glutaraldehyde-treated autologous pericardium. J. Thora Cardiovasc Surg. 2014; 147(1):301-306.

12.    Rossejkin E.V., Bazylev V.V., Batrakov P.A. i dr. Neposredstvennye rezul'taty protezirovanija stvorok aortal'nogo klapana autoperikardom po metodike Ozaki [Immediate results of aortic valve leaflets replacement with auto pericardium due to Ozaki technique]. Patobgija krovoobrashhenija i kardiohirurgija. 2016; 20(2):44-48 [ In Russ].

13.    Ozaki S., Kawase I., Yamashita H., et al. Aortic Valve Reconstruction Using Autologous Pericardium for Aortic Stenosis. Circ J. 2015; 79(7):1504-1510.

14.    Izgi C. MRI evaluation of aortic stenosis: flow evaluation. https://www.escardio.org/Education/PracticeTools/ EACVI-toolboxes/Valvular-Imaging/Atlas-of-valvular-imaging/Aortic-stenosis/MRI-evaluation-of-aortic- stenosis-flow-evaluation

15.    La Manna A., Sanfilippo A., Capodanno D. et al. Cardiovascular magnetic resonance for the assessment of patients undergoing transcatheter aortic valve implantation: a pilot study. J Cardiovasc Magn Reson. 2011;13: 82-90.

16.    Rajani R., Hancock J., Chambers J.B. The art of assessing aortic stenosis. Heart. 2012;98(4):14-22.

17.    Oosterhof T, Mulder B.J.M., Vliegen H.W. et al. Cardiovascular magnetic resonance in the follow-up of patients with corrected tetralogy of Fallot. American Heart J. 2006;151:265-272.

18.    Bazylev V.V., Paramonova T.I., Vdovkin A.V., Pal'kova V.A. Pri kakom razmere KDO u bol'nyh s sistolicheskoj disfunkciej levogo zheludochka predpochtitel'no vypolnenie magnitno-rezonansnoj tomografii [What dimensions of EDV in patients with systolic dysfunction of the left ventricle is preferable to perform MRI?.]. Diagnosticheskaja i intervencionnaja radiologija. 2017;11(2):30-37 [In Russ].

19.    Bazylev V.V., Paramonova T.I., Vdovkin A.V., Karpuhin V.G., Pal'kova V.A. Soglasovannost' JehoKG i MRT v ocenke mitral'noj regurgitacii i KDO u bol'nyh s dilataciej levogo zheludochka [Accordance of MRI and EchoCG in estimation of mitral regurgitation and EDV in patients with left ventricle dilatation]. Luchevaja diagnostika i terapija. 2017;1 (8): 64-68 [ In Russ].

 

Abstract:

Retroperitoneal fibrosis (RPF) is a relatively rare disease which shows enlarged periaortic adipose in the retroperitoneal area. The diagnosis of RPF is a challenge for the clinicians. The symptoms and signs associated with RPF are nonspecific, and diagnosis requires a high degree of suspicion. A definitive diagnosis can only be made based on biopsy findings, although US, CT scanning or MRI are essential for evaluating the disease process, for determination whether the retroperitoneal mass is due to idiopathic or secondary RPF. Article presents 2 cases of idiopathic RPF occurring in patients who was suspected of abdominal aortic aneurysm.

 

References

1.     Albarran J. Retention renale par periureterite. Liberation externe de l’uretrne. Assoc. Fr. Urol. 1905; 9: 511-517.

2.     Ormond J.K. Bilateral ureteral obstruction due to envelopment and compression by an inflammatory retroperitoneal process. J. Urol. 1948; 59: 1072-1079.

3.     Kottra J.J., Dunnick N.R. Retroperitoneal fibrosis. Radiol. Clin. North. Am. 1996; 34(6): 1259-75.

4.     McDougal W.S., MacDonell R.C. Treatment of idiopathic retroperitoneal fibrosis by immunosuppression. J. Urol. 1991; 145(1): 112-4.

5.     Dedeoglu F. et al. Successful treatment of retroperitoneal fibrosis with tamoxifen in a child. J. Rheumatol. 2001; 28(7): 1693-5.

6.     Keith D.S., Larson T.S. Idiopathic retroperitoneal fibrosis. J. Am. Soc. Nephrol. 1993; 3: 1748-52.

7.     Jones J.H. et al. Retroperitoneal fibrosis. Am. J. Med. 1970; 48: 203-8.

8.     Vaglio A. et al. Evidence of autoimmunity in chronic periaortitis: a prospective study. Am. J. Med. 2003; 114:.454-462.

9.     Katz S.M. et al. Immune complex glomerulonephritis in a case of retroperitoneal fibrosis. Am. J. Clin. Pathol. 1977; 67(5): 436-9.

10.   Parums DV, et al. Serum antibodies to oxidized low-density lipoprotein and ceroid in chronic periaortitis. Arch. Pathol. Lab. Med. 1990; 114(4): 383-7.

11.   Neild G.H. et al. Hyper-IgG4 disease: report and characterisation of a new disease. BMC Med. 2006; 4: 23.

12.   Pryor J.P. et al. Do beta-adrenoceptor blocking drugs cause retroperitoneal fibrosis? Br. Med. J. 1983; 287: 639-641.

13.   Higgins P.M., Aber G.M. Idiopathic retroperitoneal fibrosis - an update. Dig Dis. 1990; 8(4): 206-22.

14.   Uibu T. et al. Asbestos exposure as a risk factor for retroperitoneal fibrosis. Lancet. 2004; 363(9419): 1422-6.

15.   Katz R. et al. Primary and postoperative retroperitoneal fibrosis? experience with 18 cases. Urology. 2002; 60: 780-783.

16.   Mitchinson M.J. Chronic periaortitis and periarteritis. Histopathology. 1984; 8(4): 589-600.

17.   Parums D.V. The spectrum of chronic periaortitis. Histopathology. 1990; 16: 423-31.

18.   Lepor H., Walsh P.C. Idiopathic retroperitoneal fibrosis.J. Urol. 1979; 122(1): 1-6.

19.   Vaglio A. et al. Retroperitoneal fibrosis: evolving concepts. Rheum. Dis. Clin. North. Am. 2007; 33(4): 803-17.

20.   Moussavian B., Horrow M.M. Retroperitoneal fibrosis. Ultrasound Q. 2009; 25(2): 89-91.

21.   Arrive L. et al. Malignant versus nonmalignant retroperitoneal fibrosis: differentiation with MR imaging. Radiology. 1989; 172 (1): 139-43.

22.   Mikhaylov S.Kh. Retroperitoneal'nyy fibrozbolezn’ Ormonda. Avtoreferat....kand. med. nauk, Moskva.1981: 19 [In Russ].

23.   Inaraja L. et al. CT findings in circumscribed upper abdominal idiopathic retroperitoneal fibrosis. J. Comput. Assist. Tomogr. 1986; 10 (6): 1063-4.

24.   Hulnick D.H. et al. Retroperitoneal fibrosis presenting as colonic dysfunction: CT diagnosis. J. Comput. Assist. Tomogr. 1988; 12 (1):159-61.

25.   Khan A.N. et al. Retroperitoneal Fibrosis. 2004. http://emedicine.medscape.com/article/380772-overview.

26.   Dixon A.K. et al. Computed tomographic observations in periaortitis: a hypothesis. Clin. Radiol. 1984; 35(1):39-42.

27.   Ozgen A., Cila A. Renal involvement in multifocal fibrosclerosis: CT and MRI. J. Comput Assist Tomogr. 1999; 23(6): 937-8.

28.   Ayuso J.R. et al. Atypical retroperitoneal fibrosis: MRI findings. Eur. Radiol. 1999; 9(5): 937-9.

29.   Elsayes K.M. et al. Retroperitoneal masses: magnetic resonance imaging findings with pathologic correlation. Curr. Probl. Diagn. Radiol. 2007; 36(3): 97--106.

 

Abstract:

Aim: was to show possibilities of magnetic resonance imaging (MRI) in the detection and characterization of neoplasms of the heart.

Materials and methods: we retrospectively studied clinical cases of heart neoplasms, diagnosed and operated in Federal National Center of Cardiovascular Surgery (FNCCS) (Penza) since 2008 tc 2014. All patients on admission underwent echocardiography, after which, in some cases to clarify the topography of neoplasms and features of individual anatomy - MRI was performed. In postoperative follow-up period, control studies were conducted. In all cases, the diagnosis was histologically verified. All operated patients were discharged in satisfactory condition. We made a search and analysis of scientific literature on beam diagnostics of space-occupying lesions of heart.

Results: for the period of 6 years, in FNCCS were examined and surgical treatment of more than 30 thousand patients, of which neoplasms of the heart were detected in 25(0.08%) cases. Cardiac myxoma was diagnosed in 19(76%) patients, of whom in 2(8%) cases, the echocardiographic picture was mixed, that had required magnetic resonance imaging. MRI has also been used in 2(8%) patients with benign and malignant transformation of mesenchyoma, and in few cases (4%) rhabdomyomas, lipomatous hypertrophy, atrial septum, epithelioid leiomyoma of the uterus in the germinating atrium and metastatic melanoma. Also, in some cases, the use of MRI allowed to rule out malignancy and to identify mural thrombus. In 1 case, MRI gave, a detailed study of the morphology and localization of tumors to evaluate its spatial relationship with neighboring structures, study of three-dimensional and functional parameters of the heart. Dynamic mode (Cine-SSFP), planar and volumetric reconstruction (MPR) demonstrated the topography of tumors. That helped a broad understanding of the pre-operative pathology and surgical simplified decision-making. MRI allowed to analyze results of surgical correction and implement dynamic monitoring during the early and late postoperative period.

Conclusions: MRI in the diagnosis of tumors of the heart significantly complements echocardiography, providing a non-invasive multi-modal visualization, necessary for a comprehensive assessment of the topography of lesions, detection of individual anatomical features of intracardiac and extracardiac structures. MRI should be included in the diagnostic algorithm of tumors of the heart, including to assess occured hemodynamic changes.  

 

References 

1.    Centofanti P, Rosa E.Di., Deorsola L. et al. Primary cardiac tumors: carly and late results of surgical treatment in 91 patients. Ann. Thorac. Surg. 1999; 68(4):1236-1241.

2.    Schaff H.V., Mullany C.J. Surgery for cardiac myxomas. Semin Thorac. Cardiovasc. Surg. 2000; 12:77-88.

3.    Moynihan T. J. Is there such a thing as heart cancer? http: www.mayoclinic.org/heart-cancer/expert-answers/ faq-20058130.

4.    Roberts W.C. Neoplasms involving the heart, their simulators, and adverse consequences of their therapy. Bayl Univ. Med. Cent. 2001; 14:358-376.

5.    Sutsch G., Jenni R., L. von Segesser, Schneider J. Heart tumors: incidence, distribution, diagnosis exemplified by 20,305 echocardiographies. Schweiz. Med. Wochenschr. 1991; 121:621-629.

6.    Goswami K.C., Shrivastava S., Bahl V.K., et al. Cardiac myxomas: clinical and echocardiographic profile intern J. Cardiol. 1998; 63 (3):251-259.

7.    Bogaert J., Dymarkowski S., Taylor A.M. Clinical Cardiac MRI. Springer 2005; 549.

8.    Buckley O., Madan R., Kwong R., et al. Cardiac Masses, Part 1: Imaging Strategies and Technical Consideration. AJR. 2011; 197:837-841.

9.    O’Donnell D.H., Abbara S., Chaithiraphan V., et al. Cardiac Tumors: Optimal Cardiac MR Sequences and Spectrum of Imaging Appearances. AJR. 2009; 193: 377387.

10.  Finn J.P, Nael K., Deshpande V., et al. Cardiac MR imaging: state of the technology. Radiology. 2006; 241:338-354.

11.  Fussen S., De Boeck B.W., Zellweger M.J., et al Cardiovascular magnetic resonance imaging for diagnosis and clinical management of suspected cardiac masses and tumours. Eur. Heart J. 2011; 32(12):1551-1560.

12.  Belenkov Ju.N., Sinicin V.E., Ternovoj S.K. Magnitno-rezonansnaja tomografija serdca i sosudov[MRI of heart and vessels]. Vidar. 1997; 144 р [In Russ].

13.  Bokerija L.A., Malashenkov A.I., Kavsadze V. Je., Serov R.A. Kardioonkologija [Cardiology]. NCSSH im. A.N. Bakuleva RAMN. 2003; 254 р [In Russ].

14.  Burke A., Virmani R. Atlas of Tumor Pathology. Tumors of the Heart and Great Vessels. Armed Forces Institute of Pathology. 1996.

15.  Butany J., Leong S.W., Carmichael K., Komeda M. A 30-year analysis of cardiac neoplasms at autopsy. Can. J. Cardiol. 2005; 21:675-680.

16.  Telen M., Jerbel R., Krejtner K-F., Barkhauzen J. Luchevye metody diagnostiki boleznej serdca [Beam methods of diagnostics of heart diseases]. MEDpress-inform. 2011; 408 р [in Russ].

17.  Hanson E.C. Cardiac tumors: a current perspective. NY State J. Med. 1992; 92:41-42.

18.  Amano J., Kono T., Wada Y, et al. Cardiac myxoma: its origin and tumor characteristics. Ann. Thorac. Cardiovasc. Surg. 2003; 9:215-21.

19.  Araoz PA., Mulvagh S.L., Tazelaar H.D., et al. CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics. 2000; 20:1303-19.

20.  Buckley O., Madan R., Kwong R., et al. Cardiac Masses, Part 2: Key Imaging Features for Diagnosis and Surgical Planning. AJR. 2011; 197:842-851.

 

 

Abstract:

Aim: was to show capabilities of MDCT-angiography of coronary arteries in the detection and characterization of rare forms of anomalous coronary arteries from the pulmonary artery in adult patients

Materials and methods: we made retrospective study of anomalous coronary arteries from pulmonary arteries in patients who have been examined and operated in our Center for the period of 2008-2013. All patients on admission underwent: echocardiography, selective coronary angiography and MDCT coronarography Postoperatively - echocardiography and MDCT coronarography.

Results: for the period of 5 years about 30,000 patients underwent examination in our center, and congenital anomalous coronary arteries from the pulmonary artery was identified only in 6(0,02 %) cases. 4( 0,013%) of them had «infantile» type - ALCAPA. In adults, anomalous coronary arteries from the pulmonary artery revealed in 2 cases: a 31 year woman had «adult» type ALCAPA (0,003%) and 17-year boy - isolated form ARCAPA (0,003%). Preoperative MDCT provided direct visualization of anomalous coronary arteries from the pulmonary artery, displayed the spatial relationship of coronary vessels in the three-dimensional image that helped to clarify and demonstrate for cardiac surgeons individual characteristics of congenital disorder. Marked dilatation and tortuous course of trunks and branches of coronary arteries, the severity of which declined after surgical correction. Adult patients successfully underwent surgical correction: reimplantation of anomalous coronary arteries in orthotopic position in cardiopulmonary bypass with the creation of two-coronary blood supply of the heart

Conclusions: Even in cases where a definitive diagnosis of anomalous coronary arteries from the pulmonary artery can be diagnosed by echocardiography and coronary angiography, before surgery is recommended to perform MDCT angiography to clarify the anatomy and more specific spatial representation of the topography of the anomalous vessel. In the late postoperative period this method allows to assess in details the condition of coronary flow and effectiveness of coronary intervention. 

 

References

1.     Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am. Heart J. 1989; 117: 418-434.

2.     Maron B.J. Triggers for sudden cardiac death in the athlete. Cardiol. Clin. 1996; 14: 195-210.

3.     Corrado D., Basso C., Rizzoli G., et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 2003; 42: 1959-1963.

4.     Jakobs T., Becker C., Ohnesorge B., et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur. Radiol. 2002; 12: 1081-1087.

5.     Wollenek G., Domanig E., Salzer-Muar U., et al. Anomalous origin of the left coronary artery: a review of surgical management in 13 patients. J. Cardiovasc. Surg. 1993; 34: 399-405.

6.     Jurishica A.J. Anomalous left coronary artery; adult type. Am. Heart J. 1957; 54: 429-436.

7.     Kawara T., Tayama E., Hayashida N., et al. Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery: Successful Direct Reimplantation in a 50-year-old Man. Ann.Thorac Cardiovasc Surg. 2003, 9 (3): 197-201.

8.     Williams I.A., Gersony W.M., Hellenbrand W.E. Anomalous right coronary artery arising from the pulmonary artery: a report of 7 cases and a review of the literature. Am. Heart J. 2006; 152(5): 1004-1017.

9.     Maroules C.D., Adams D.Z., Whiting E.D., et al. Anomalous Origin of the Right Coronary Artery from the Pulmonary Artery Evaluation with Use of 64-Slice Multidetector Computed Tomography. Texas Heart Institute Journal. 2013; 40(1): 93-99.

10.   Burakovskij V.I., Sharykin A.S., Garibjan V.A. Anomal'noe othozhdenie pravoj koronarnoj arterii ot legochnoj arterii v sochetanii s defektom mezhzheludochkovoj peregorodki [Anomalous right coronary artery from the pulmonary artery in conjunction with a ventricular septal defect.]. Grudnaja hirurgija. 1981; 2: 1-10 [In Russ].

11.   Burakovskij V.I., Podlozkov V.P., Ragimov F.R. Diagnostika i hirurgicheskoe lechenie defektov aortolegochnoj peregorodki, sochetajushhihsja s drugimi vrozhdennymi porokami serdca [Diagnosis and surgical treatment of defects aorto-pulmonary septum, combined with other congenital heart defects.]. Grudnaja hirurgija. 1982; 6: 13-21 [In Russ].

12.   Kacitadze Z.D. Rezul'taty hirurgicheskogo lechenija anomaij othozhdenija koronarnyh arterij ot legochnoj arterii. Avtoreferat. Diss. kand. med. Nauk [Results of surgical treatment of coronary artery anomalies of divergence from the pulmonary artery.]. M.1998; 28 [In Russ].

13.   Modi H., Ariyachaipanich A., Dia M. Anomalous origin of right coronary artery from pulmonary artery and severe mitral regurgitation due to myxomatous mitral calve disease: a case report and literature review. Journal of Invasive Cardiology. 2010; 2(4): 49-55.

14.   Yao C.T., Wang J.N., Yeh C.N., et al. Isolated anomalous origin of right coronary artery from the main pulmonary artery. Journal of Cardiac Surgery. 2005; 20(5): 487-489.

15.   Angelini P. Coronary artery anomalies-current clinical issues: definitions, classification, incidence, clinical relevance, and treatment guidelines. Tex. Heart Inst. J. 2002; 29: 271-278.

16.   Abbott M.E. Congenital Cardiac disease. Modern Medicine. Philadelphia. 1908.

17.   Abrikossoff A. Aneurysma des linken Herzventrikels mit abnormer Abgangsstelle der linken Koronararterie von der Pulmonalis bei einem funsonatlichen Kinde. Virchows Arch. Pathol. Anat. 1911; 203: 413.

18.   Keith J.D. Diseases of coronary arteries and aorta. in: Keith J.D., Rowe R.D., Vlad P., editors. General cardiac disease. 3rd ed. New York; Macmillan Publishing Co. Inc; 1978.

19.   Bland E.F., White P.D., Garland J. Congenital anomalies of the coronary arteries: report of an unusual case associated with cardiac hypertrophy. Am. Heart J. 1933; 8: 787-801.

20.   Emmanouilides G.C., Riemenschneider T.A., Allen

H.    D., Gutgesell H.P Heart disease in infants, children, and adolescents. 5th edition. Williams and Wilkins (Publishers) Ltd, Baltimore 1995; 776-779.

21.   DeLeval M.R., Yacoub M., Georgakopoulos D.I., et al. Bland-White-Garland Syndrome: Definitive echocardiographic diagnosis of a surgical treatable form of dilatative cardiomyopathy. Hell. J. Cardiol. 1991; 32: 22.

22.   Frescura C., Basso C., Thiene G., et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum. Pathol. 1998; 29: 689-695.

23.   Yau J.M., Singh R., Halpern E.J., Fischman D. Anomalous origin of the left coronary artery from the pulmonary artery in adults: a comprehensive review of 151 adult cases and a new diagnosis in a 53-year-old woman. Clin. Cardiol. 2011; 34: 204-210.

24.   Dodge-Khatami A., Mavroudis C., Backer C.L. Anomalous origin of the left coronary artery from the pulmonary artery: collective review of surgical therapy. Ann. Thorac. Surg. 2002; 74: 946-955.

25.   Brooks H.S.J. Two cases of an abnormal coronary artery of the heart arising from the pulmonary artery: with some remarks upon the effect of this anomaly in producing cirsoid dilatation of the vessels. J. Anat. Physiol. 1885; 20(Pt 1): 26-29.

26.   Mollet N.R., Cademartiri F., van Mieghem C.A., et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112 (5): 2318-2323.

27.   Menahem S., Venables A.W., Anomalous left coronary artery from the pulmonary artery: a 15 year sample. Br. Heart J. 1987; 58: 78-84.

28.   Montaudon M., Latrabe V., Iriart X., et al. Congenital coronary arteries anomalies: Review of the literature and multidetector computed tomography (MDCT)-appearance. Surg. Radiol. Anat. 2007; 29: 343-355.

29.   Brijesh P, Kottayil M., Karunakaran J. et al. Anomalous Origin of Left Coronary Artery From Pulmonary Artery in Older Children and Adults: Direct Aortic Implantation. Ann. Thorac. Surg. 2011; 91: 549-553.

30.   Johnsrude C.L., Perry J.C., Cecchin F. Differentiating anomalous left coronary artery originating from the pulmonary artery in infants from myocarditis and dilated cardiomyopathy by electrocardiogram. Am. J. Cardiol. 1995; 75: 71-79.

31.   King D.H., Danford D.A., Huhta J.C., Gutgesell H.P Noninvasive detection of anomalous origin of the left main coronary from the pulmonary trunk by pulsed Doppler echocardiography. Am.J. Cardiol. 1985; 55: 608-717.

32.   Frommelt M.A., Miller E., Williamson J., Bergstrom S. Detection of septal coronary collaterals by color flow Doppler mapping is a marker for anomalous origin of a coronary artery from the pulmonary artery. J. Am. Soc. Echocardiogr. 2002; 15(3): 259-263.

33.   Schmidt K.G., Cooper M.J., SilvermanN.H., Stanger P Pulmonary artery origin of the left coronary artery: Diagnosis by two-dimensional echocardiography, pulsed Doppler ultrasound and colour flow mapping. J. Am. Coll. Cardiol. 1988; 11: 396-402.

34.   Tavakol M., Ashraf S., Brener S.J. Risks and Complications of Coronary Angiography: A Comprehensive Review. Global Journal of Health Science. 2012; 4(1): 65-93.

35.   Ternovoj S.K., Nikonova M. Je., Akchurin R.S., i dr. Vozmozhnosti mul'tispiral'noj komp'juternoj tomografii (MSKT) v ocenke koronarnogo rusla i ventrikulografii v sravnenii intervencionnoj koronaroventrikulografiej [Possibilities of MDCT in the evaluation of coronary disease and ventriculography in comparison intrvention coronaro ventriculography.]. REJR. 2013; 3(1): 28-35 [InRuss].

36.   Fine J.J., Hopkins C.B., Ruff N., et al. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am. J. Cardiol. 2006; 97: 173-174.

37.   Leschka S., Alkadhi H., Plass A., et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Heart J. 2005; 26: 1482-1487.

38.   de Jonge G.J., van Ooijen PM., Piers L.H., et al. Visualization of anomalous coronary arteries on dualsource computed tomography. Eur. Radiol. 2008; 18: 2425-243

39.   Nambi P, Sengupta R., Cheong B.Y Multislice computed tomography of a repaired anomalous left coronary artery arising from the pulmonary artery. Tex. Heart. Inst. J. 2008; 35: 485-486.

40.   Su C.S., Tsai I.C., Lin W.W., et al. Usefulness of multidetector-row computed tomography in diagnosis of anomalous origin of left coronary artery arising from the pulmonary artery. J. Chin.Med. Assoc. 2010; 73: 492-495.

41.   Schmitt R., Froehner S., Brunn J., et al. Congenital anomalies of the coronary arteries: imaging with contrastenhanced, multidetector computed tomography. Eur. Radiol. 2005; 15(6): 1110-1121. 

 

 

Abstract:

Aim: was to evaluate the influence of factors on the development of diaphragmatic dysfunction ir early periods after cardiac surgery

Materials and methods: study included 830 patients after various cardiac surgery in Federal National Center of Cardiovascular Surgery (Penza, Russian Federation). In the early postoperative period (3,9 ± 0,9 days) all patients underwent chest x-ray while transporting from intensive care unit. We evaluated differences between diaphragm contors in two consecutive shots - with a deep breath and exhale fully In the early postoperative period diaphragmatic dysfunction was detected in 172 cases (20.7%). Patients were divided into 4 groups depending on the presence or absence of a violation of the diaphragm function. The criterion of selection into the group with diaphragmatic dysfunction was size of amplitude motion, less than 10 mm. 1st group with normal mobility of the diaphragm included 658 patients (79.3%). 2nd group with dysfunction of the left dome of the diaphragm - 85 patients(10.2%). 3rd group with dysfunction of the right dome - 58 patients (7%). 4th group with bilateral diaphragmatic dysfunction - 29 patients (3.5%). Logistic regression model included 4 variables, the significance of which is reflected by the published data: preparation of internal thoracic artery (ITA) for graft, valve surgery, the use of radiofrequency ablation, the use of cardiopulmonary bypass. We made a multiple logistic regressive analysis of predictors for the development of diaphragmatic dysfunction.

Results: we have found that under the influence of complex predictors, greatest chance of dysfunction was observed in the group with bilateral violation of diaphragm mobility after two-sidec separation of ITA (OR 3.4; CI 1.60, 7.25). High chances of dysfunction were observed in groups with unilateral violation of diaphragm mobility after unilateral separation of ITA. Separation of left ITA had higher chances for diaphragmal dysfunction (OR 2.7; CI 1.36; 5.37) than in case of separation of right ITA (OR 2.0; CI 1.16, 3.47). After valve operations, radiofrequency ablation, and cardiopulmonary bypass chances of diaphragmatic dysfunction was statistically insignificant (p>0.05) in all study groups.

Conclusions: diaphragmatic dysfunction develops in 3.4 times greater in case of bilateral separation of ITA. Unilateral dysfunction of the diaphragm has a great chance in case of separation of ITA: left up to 2.7 times and right up to 2 times. Influence of cardiopulmonary bypass, valve operations and radiofrequency ablation for the development of diaphragmatic dysfunction is statistically insignificant.

 

References

1.     Berrizbeitia L.D., Tessler S., Jacobowitz I.J., et al. Effect of sternotomy and coronary bypass surgery on postoperative pulmonary mechanics. Chest. 1989, 96(4):873-876.

2.     Deng Y, Byth K., Paterson H.S. Phrenic nerve injury associated with high free right internal mammary artery harvesting. Ann. Thorac. Surg. 2003; 76(2):459-463.

3.     Mazzoni M., Solinas C., Sisillo E., et al. Intraoperative phrenic nerve monitoring in cardiac surgery. Chest. 1996, 109(6):1455-1460.

4.     O'Brien J.W., Johnson S.H., VanSteyn S.J., et al. Effects of internal mammary artery dissection on phrenic nerve perfusion and function. Ann.Thorac. Surg. 1991, 52(2):182-188.

5.     Tripp H.F., Sees D.W., Lisagor P.G., et al. Is phrenic nerve dysfunction after cardiac surgery related to internal mammary harvesting? J. Card. Surg. 2001, 16(3): 228-231.

6.     Canbaz S., Turgut N., Halici U., et al. Electrophysiological evaluation of phrenic nerve injury during cardiac surgery - a prospective, controlled, clinical study. BMC Surgery. 2004, 4:2.

7.     Merino-Ramirez M.A., Juan G., Rair^n M., et al. Electrophysiologic evaluation of phrenic nerve and diaphragm function after coronary bypass surgery: prospective study of diabetes and other risk factors. J. Thorac. Cardiovasc. Surg. 2006; 132:530-536.

8.     Metzner A., Rausch P, Lemes C., et al. The incidence of phrenic nerve injury during pulmonary vein isolation using the second-generation 28 mm cryoballoon. J. Cardiovasc. Electrophysiol. 2014; 25(5):466-470.

9.     Diehl J.L., Lofaso F., Deleuze P, et al. Clinically relevant diaphragmatic dysfunction after cardiac operations. J. Thorac. Cardiovasc. Surg. 1994; 107:487-498.

10.   Efthimiou J., Butler J., Woodham C., et al. Diaphragm paralysis following cardiac surgery: role of phrenic nerve cold injury. Ann. Thorac. Surg. 1991; 52:1005-1008.

11.   Smith B.M., Ezeokoli N.J., Kipps A.K., et al. Course, Predictors of Diaphragm Recovery After Phrenic Nerve Injury During Pediatric Cardiac Surgery. Ann. Thorac. Surg. 2013; 96:938-42.

12.   Kim W. Y; Suh H. J.; Hong S.-B.; Koh Y; Lim C.-M. Diaphragm dysfunction assessed by ultrasonography: Influence on weaning from mechanical ventilation. Critical Care Medicine. 2011; 12:2627-2630.

13.   Davison A., Mulvey D. Idiopathic diaphragmatic weakness. BMJ. 1992; 304:492-494.

14.   McCool F.D., Tzelepis G.E. Dysfunction of the Diaphragm. N. Engl. J. Med. 2012; 366:932-942.

15.   McCool F.D., Mead J. Dyspnea on immersion: mechanisms in patients with bilateral dia-phragm paralysis. Am. Rev. Respir Dis. 1989; 139:275-276.

16.   Steier J., Jolley C.J., Seymour J., et al. Sleep-disordered breathing in unilateral diaphragm paralysis or severe weakness. Eur. Respir. J. 2008; 32:1479-1487.

17.   Wang C.S., Josenhaus W.T. Contribution of the diaphragmatic-abdominal displacement to ventilation in supine man. J. Appl. Physiol. 1971; 31:576-80.

18.   Stradling J.R., Warley A.R. Bilateral diaphragm paralysis and sleep apnoea without diurnal respiratory failure. Thorax. 1988; 43:75-77

19.   Summerhill E.M., El-Sameed YA., Glidden T.J. Monitoring recovery from diaphragm paralysis with ultrasound. Chest. 2008; 133:737-743.

20.   El-Sobkey S.B., Salem N.A. Can lung volumes and capacities be used as an outcome measure for phrenic nerve recovery after cardiac surgeries? J. Saudi. Heart Assoc. 2011; 23:23-30.

21.   Laroche C.M., Mier A.K., Moxham J., Green M. Diaphragm strength in patients with recent hemidiaphragm paralysis. Thorax. 1988; 43:170-174.

22.   Линденбратен Л.Д. Лучевая диагностика поражений диафрагмы. Радиология и практика. 2001; 2:6-21. Lindenbraten L.D. Luchevaja diagnostika porazhenij diafragmy[Beam diagnostics of diaphragm lesions]. Radiologija ipraktika. 2001; 2:6-21[In Russ].

23.     Suwatanapongched T., Gierada D.S., Slone R.M. et al. Variation in Diaphragm Position and Shape in Adults With Normal Pulmonary Function. Chest. 2003; 123(6): 2019-2027. 

 

Abstract:

Aim: was to reveal factors that cause dyspnea in the early postoperative period after cardiac surgery.

Materials and methods: the study included 818 patients after cardiosurgical interventions in «F^S» Penza from June 2014 to February 2015, with complaints of shortness of breath at rest. The degree of influence of variables was determined using ROC analysis and logistic regression analysis.

Results: dyspnea was noted in 169 patients (19.4 %). ROC-analysis revealed a very large influence on the occurrence of dyspnoea disturbances of the mobility of the diaphragm, the great influence of the frequency of respiratory movements, the average impact of the height of diaphragm domes and low impact of body mass index. Results of logistic regression analysis showed that odds increase in 327 times at a decreased mobility of the left dome of the diaphragm 49 times in dysfunction of the right dome, 4,4-times elevation in the left dome, 3,5 times at the elevation of the right dome, 3.9 times with tachypnea and 2,6 times for severe obesity, in 1,5 times in chronic heart failure II B degree. Other factors, included in research, didn't influence on dispnea appearance.

Conclusions: a leading factor in the occurrence of dyspnea is dysfunction of the diaphragm, especially when decreased mobility of the left dome. To a lesser extent, reasons can be the elevation of diaphragm domes and tachypnea. Obesity 2 and 3 degree and chronic heart failure II B degree, had a small effect on dyspnea.

 

References

1.     American Heart Society. Dyspnea mechanisms, assessment, and management: a consensus statement. Am RevResp Crit Care Med. 1999; 159: 321-340.

2.     Parshall M.B., Schwartzstein R.M., Adams L., et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012; 185:435.

3.     Elliott M.W., Adams L., Cockcroft A., et al. The language of breathlessness. Use of verbal descriptors by patients with cardiopulmonary disease. Am Rev Respir Dis 1991;144: 826.

4.     Mahler D.A, Harver A., Lentine T., et al. Descriptors of breathlessness in cardiorespiratory diseases. Am J Respir Crit Care Med. 1996; 154:1357.

5.     Simon P.M., Schwartzstein R.M., Weiss J.W., et al. Distinguishable types of dyspnea in patients with shortness of breath. Am Rev Respir Dis. 1990; 142:1009-1014.

6.     Narin C., et al. Perioperative Considerations in Cardiac Surgery. InTech, 2012.

7.     Manning H.L., Schwartzstein R.M. Pathophysiology of Dyspnea. N Engl J Med.1995; 333:1547-1553.

8.     Schmidt M., Banzett R. B., Raux M., et al. Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Medicine. 2014; 40(1): 1-10.

9.     West J.B. Pulmonary pathophysiology: the essentials (7 ed.). Baltimore: Lippincott Williams & Wilkins. 2008.

10.   Berrizbeitia L.D., Tessler S., Jacobowitz I.J., et al. Effect of sternotomy and coronary bypass surgery on postoperative pulmonary mechanics. Chest. 1989; 96(4): 873-876.

11.   Locke T.J., Griffiths T.L., Mould H., Gibson G.J. Rib cage mechanics after median sternotomy. Thorax. 1990; 45: 465-8.

12.   Shenkman Z., Shir Y, Weiss YG., et al. The effects of cardiac surgery on early and late pulmonary functions. Acta Anaesthesiol Scand. 1997; 41(9):1193-1199.

13.   Andrianova E.N., Reshetova T.G., Ryvkin A.I. i dr. Sposob diagnostiki podvizhnosti diafragmy pri bronhial'noj astme u detej [Method of diagnostics of diaphragm dome mobility in children with asthma]. Patent RU 2229845, 2004 [In Russ].

14.   Imanaka H., Kimball W.R., Wain J.C., et al. Recovery of diaphragmatic function in awake sheep after two approaches to thoracic surgery. J Appl Physiol. 1997; 83: 1733-1740.

15.   Ragnarsdуttir M., Kristjбnsdуttir Б., Ingvarsdуttir I., et al. Short-Term Changes in Pulmonary Function and Respiratory Movements after Cardiac Surgery via Median Sternotomy. Scandinavian Cardiovascular Journal. 2004; 38, 46-52.

16.   Davison A., Mulvey D. Idiopathic diaphragmatic weakness. BMJ. 1992; 304: 492-494.

17.   McCool F.D., Tzelepis G.E. Dysfunction of the Diaphragm. N Engl J Med.2012; 366: 932-942.

18.   Jaber S., Petrof B.J., Jung B., et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011; 183: 364-371.

19.   Levine S., Budak M.T., Dierov J., Singhal S. Inactivity-induced diaphragm dysfunction and mitochondria-targeted antioxidants: new concepts in critical care medicine. Crit Care Med. 2011; 39:1844-1845.

20.   Levine S., Nguyen T, Taylor N., et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008; 358:1327-1335.

21.   Jiao W., Zhao Y, Wang M., et al. A retrospective study of diaphragmatic motion, pulmonary function, and quality-of-life following video-assisted thoracoscopic lobectomy in patients with nonsmall cell lung cancer. Indian J Cancer. 2015; 51 2: 45-48.

22.   McCool F.D., Mead J. Dyspnea on immersion: mechanisms in patients with bilateral diaphragm paralysis. Am Rev Respir Dis. 1989; 139: 275-276.

23.   Wang C.S., Josenhaus W.T. Contribution of the diaphragmatic-abdominal displacement to ventilation in supine man. J Appl Physiol. 1971; 31: 576-580.

24.   Diehl J.L., Lofaso F., Deleuze P., et al. Clinically relevant diaphragmatic dysfunction after cardiac operations. J Thorac Cardiovasc Surg. 1994; 107:487-498.

25.   Wheatcroft M., Shrivastava V., Nyawo B., et al. Does pleurotomy during internal mammary artery harvest increase post-operative pulmonary complications? Interact Cardiovasc Thorac Surg. 2005; 4: 143-146.

26.   Canbaz S., Turgut N., Halici U., et al. Diagnosis of phrenic nerve injury after cardiac surgery. Ann Thorac Surg. 2004; 78(4): 1517.

27.   O'Brien J.W., Johnson S.H., VanSteyn S.J., et al. Effects of internal mammary artery dissection on phrenic nerve perfusion and function. Ann Thorac Surg. 1991; 52(2): 182-188.

28.   Lindenbraten L.D. Luchevaja diagnostika porazhenij diafragmy [Beam diagnostics of diaphragm lesions]. Radiologija-praktika. 2001; 2: 6-21 [ In Russ].

29.   Nason L.K., Walker C.M., McNeeley M.F., et al. Imaging of the Diaphragm: Anatomy and Function. RadioGraphics. 2012; 32: 51-70.

30.   Suwatanapongched T., Gierada D.S., Slone R.M. et al. Variation in Diaphragm Position and Shape in Adults With Normal Pulmonary Function. Chest. 2003; 123, 6: 2019-2027.

 

 

 

Abstract:

Aim: was to determine what dimensions of an end-diastolic volume (EDV) in patients with reducec left ventricular function (LV) higher chances to measure its value up to 50 ml with Echocardiography compared to MRI.

Materials and methods: the sample consisted of 134 patients with ischemic cardiomyopathy and ejection fraction (EF) less than 35%. A mathematical model that calculates what dimensions of the MLC are more likely to determine its size with an accuracy of up to 50 ml with Echocardiography compared to MRI. Produced logistic regression analysis and calculated odds ratios.

Results: аccording to Echocardiography the EDV was 250.5 ± 67.6 ml, EF was 29.4 ± 5.0 percent. According to MRI, the EDV was 249.3 ± 77.2 ml, EF was 29.9 ± 6.4 percent. Results of the logistic regression analysis showed that EDV to 150 ml have high chances of a consistent measure of EDV with Echocardiography and MRI (OR a 2,5). In groups with EDV more than 150 ml but less than 300 ml had low chances of an accurate measurement of the EDV at the Echocardiography (OR from 0,62 to 0,95). Since EDV is greater than 300 ml, a marked increase chances Echocardiography, to determine EDV up to 50 ml compared to MRI (OR from 2,3 to 4,2).

Conclusions: when EDV to 150 ml, and in dilatation of the left ventricle more than 300 ml MRI has no advantages compared to Echocardiography In these figures there is no need to duplicate echocardiographic study When the EDV of 150 to 300 ml, for determination of volumetric indices it is better to use MRI, because the computations do not depend on the geometric shape of the left ventricle.

 

References

1.     Brown M., Schaff N., Suri R. et al. Indexed Left Ventricular Dimensions Best Predict Survival After Aortic Valve Replacement in Patients With Aortic Valve Regurgitation. Ann Thorac Surg. 2009; 87: 1170-1176.

2.     Grayburn P, AppletonC., DeMaria A. et al. Echocardiographic Predictors of Morbidity and Mortality in Patients With Advanced Heart Failure. The Beta-blocker Evaluation of Survival Trial. J Am Coll Cardiol. 2005; 45: 1064-1071.

3.     Kleml., Shah D., White R. et al. Prognostic Value of Routine Cardiac Magnetic Resonance Assessment of Left Ventricular Ejection Fraction and Myocardial Damage. Circ Cardiovasc Imaging. 2011; 4: 610-619.

4.     Malm S., Frigstad S., Sagberg E.; et al. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography a comparison with magnetic resonance imaging. J Am Coll Cardiol. 2004; 44 (5): 1030-1035.

5.     Bogaert J., Dymarkowski S., Taylor A. M. et al. Clinical Cardiac MRI. Springer. 2012; 721.

6.     Kreitner, K-F, Sandstede J. Leitlinien for den Einsatz der MR-Tomographi in der Herzdiagnostik. Fortschr Roentgenstr. 2004; 176: 1185-1193.

7.     Bellenger N.G., Burgess M.I., Ray S.G. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionucleide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000; 21: 1387-1396.

8.     Bernard Y, Meneveau N., Boucher S. et al. Lack of agreement between left ventricular volumes and ejection fraction determined by two-dimensional echocardiography and contrast cineangiography in postinfarction patients. Echocardiography. 2001; 18: 113-122.

9.     De Haan S., de Boer K., Commandeur J. et al. Assessment of left ventricular ejection fraction in patients eligible for ICD therapy: Discrepancy between cardiac magnetic resonance imaging and 2D echocardiography. Neth Heart J. 2014; 22 (10): 449-455.

10.   Gardner B., Bingham S., Allen M. et al. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. The J of Cardiovasc ultrasound. 2009; 7: 38.

11.   Bellenger N.G., Francis J.M., Davies L.C. et al. Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson. 1999; 1 (4): 323-330.

12.   Darasz K.H., Underwood S.R., Bayliss J. et al. Measurement of left ventricular volume after anterior myocardial infarction: comparison of magnetic resonance imaging, echocardiography, and radionuclide ventriculography. The Int J of Cardiovasc Imaging. 2002; 18(2): 135-142.

13.   Li C., Lossnitzer D., Katus H.A. et al. Comparison of left ventricular volumes and ejection fraction by monoplane cineventriculography, unenhanced echocardiography and cardiac magnetic resonance imaging. Int J Cardiovasc Imaging. 2012; 28 (5): 1003-1010.

14.   Duncan A.I., Lowe B.S., Garcia M.J. et al. Influence of concentric left ventricular remodeling on early mortality after aortic valve replacement. Ann Thorac Surg. 2008; 85 (6): 2030-2039.

15.   Lang R., Bierig M., Devereux R. et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group. J Am Soc Echocardiogr. 2005; 18: 14401463.

16.   Belenkov Ju.N., Ternovoj S.K., Sinicyn V.E. Magnitno-rezonansnaja tomografija serdca i sosudov [Cardiac and vesssels MRI]. M.: Vidar. 1997; 144 [In Russ].

17.   Di Donato M., Sabatier M., Dor V. Akinetic versus dyskinetic postinfarction scar: relation to surgical outcome in patients undergoing endoventricular circular patch plasty repair. JACC. 1997; 29: 1569-1575.

18.   Hoffmann R., von Bardeleben S., ten Cate F., et al. Assessment of systolic left ventricular function: a multicentre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. Eur Heart J. 2005; 26: 607-16.

19.   Jenkins C., Moir S., Chan J. et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009; 30: 98-106.

20.   Lim T.K., Burden L., Janardhanan R., et al. Improved accuracy of low-power contrast echocardiography for the assessment of left ventricular remodeling compared with unenhanced harmonic echocardiography after acute myocardial infarction: comparison with cardiovascular magnetic resonance imaging. J Am Soc Echocardiogr. 2005; 18: 1203-1207.

21.   Thomson H.L., Basmadjian A., Rainbird A. et al. Contrast echocardiography improves the accuracy and reproducibility of left ventricular remodeling measurements: A prospective, randomly assigned, blinded study. J Am Coll Cardiol. 2001; 38: 867-875.

22.   Buziashvili Ju.I., Kljuchnikov I.V., Melkonjan A.M. i soavt. Ishemicheskoe remodelirovanie levogo zheludochka (opredelenie, patogenez, diagnostika, medikamentoznaja i hirurgicheskaja korrekcija) [Ischemic remodeling of left ventricle (determination, pathogenesis, diagnostics, drug and surgical correction]. Kardiologija. 2002; 42 (10): 88-94 [In Russ].

23.   Chernjavskij A.M., Kareva Ju.E., Denisova M.A. i soavt. Problema predoperacionnogo modelirovanija levogo zheludochka [Problem of post-operative remodeling of left ventricle]. Kardiologija i serdechno-sosudistaja hirurgija. 2015; 2: 4-7 [In Russ].

24.   Di Donato M., Castelvecchio S., Kukulski T. et al. Surgical Ventricular Restoration: Left Ventricular Shape Influence on Cardiac Function, Clinical Status, and Survival. Ann Thorac Surg. 2009; 87 (2): 455-461.

25.   Ahn H.S., Kim H.K., Park E.A. et al. Isolated, broad-based apical diverticulum: cardiac magnetic resonance is a «terminator» of cardiac imaging modality for the evaluation of cardiac apex. Korean Circ J. 2013; 43 (10): 702-704.

26.   Lloyd S.G., Buckberg G.D. Use of cardiac magnetic resonance imaging in surgical ventricular restoration. Eur J of Cardiothoracic Surg. 2006; 216-222.

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы